Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
1.
Gene ; 904: 148218, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38307220

RESUMO

Eukaryotic transcription is a finely orchestrated process and it is controlled by transcription factors as well as epigenetic regulators. Transcription factors and epigenetic regulators undergo different types of posttranslational modifications including ubiquitination to control transcription process. Ubiquitination, traditionally associated with protein degradation, has emerged as a crucial contributor to the regulation of chromatin structure through ubiquitination of histone and chromatin remodelers. Ubiquitination introduces new layers of intricacy to the regulation of transcription initiation through controlling the equilibrium between euchromatin and heterochromatin states. Nucleosome, the fundamental units of chromatin, spacing in euchromatin and heterochromatin states are regulated by histone modification and chromatin remodeling complexes. Chromatin remodeling complexes actively sculpt the chromatin architecture and thereby influence the transcriptional states of genes. Therefore, understanding the dynamic behavior of nucleosome spacing is critical as it impacts various cellular functions through controlling gene expression profiles. In this comprehensive review, we discussed the intricate interplay between ubiquitination and transcription initiation, and illuminated the underlying molecular mechanisms that occur in a variety of biological contexts. This exploration sheds light on the complex regulatory networks that govern eukaryotic transcription, providing important insights into the fine orchestration of gene expression and chromatin dynamics.


Assuntos
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Nucleossomos/genética , Eucromatina , Heterocromatina , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Fatores de Transcrição/genética , Expressão Gênica
2.
Trends Cell Biol ; 34(1): 7-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37385880

RESUMO

Genomic DNA is wrapped around a core histone octamer and forms a nucleosome. In higher eukaryotic cells, strings of nucleosomes are irregularly folded as chromatin domains that act as functional genome units. According to a typical textbook model, chromatin can be categorized into two types, euchromatin and heterochromatin, based on its degree of compaction. Euchromatin is open, while heterochromatin is closed and condensed. However, is euchromatin really open in the cell? New evidence from genomics and advanced imaging studies has revealed that euchromatin consists of condensed liquid-like domains. Condensed chromatin seems to be the default chromatin state in higher eukaryotic cells. We discuss this novel view of euchromatin in the cell and how the revealed organization is relevant to genome functions.


Assuntos
Eucromatina , Heterocromatina , Humanos , Cromatina , Nucleossomos
3.
J Virol ; 97(12): e0117923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991367

RESUMO

IMPORTANCE: The traditional view of retrovirus assembly posits that packaging of gRNA by HIV-1 Gag occurs in the cytoplasm or at the plasma membrane. However, our previous studies showing that HIV-1 Gag enters the nucleus and binds to USvRNA at transcription sites suggest that gRNA selection may occur in the nucleus. In the present study, we observed that HIV-1 Gag trafficked to the nucleus and co-localized with USvRNA within 8 hours of expression. In infected T cells (J-Lat 10.6) reactivated from latency and in a HeLa cell line stably expressing an inducible Rev-dependent HIV-1 construct, we found that Gag preferentially localized with euchromatin histone marks associated with enhancer and promoter regions near the nuclear periphery, which is the favored site HIV-1 integration. These observations support the innovative hypothesis that HIV-1 Gag associates with euchromatin-associated histones to localize to active transcription sites, promoting capture of newly synthesized gRNA for packaging.


Assuntos
Núcleo Celular , Eucromatina , HIV-1 , Código das Histonas , Histonas , Empacotamento do Genoma Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Elementos Facilitadores Genéticos/genética , Eucromatina/genética , Eucromatina/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Células HeLa , Histonas/metabolismo , HIV-1/genética , HIV-1/crescimento & desenvolvimento , HIV-1/metabolismo , Regiões Promotoras Genéticas/genética , Linfócitos T/virologia , Transcrição Gênica , Ativação Viral
4.
New Phytol ; 240(5): 2085-2101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823324

RESUMO

Recent studies have shown that correlations between chromatin modifications and transcription vary among eukaryotes. This is the case for marked differences between the chromatin of the moss Physcomitrium patens and the liverwort Marchantia polymorpha. Mosses and liverworts diverged from hornworts, altogether forming the lineage of bryophytes that shared a common ancestor with land plants. We aimed to describe chromatin in hornworts to establish synapomorphies across bryophytes and approach a definition of the ancestral chromatin organization of land plants. We used genomic methods to define the 3D organization of chromatin and map the chromatin landscape of the model hornwort Anthoceros agrestis. We report that nearly half of the hornwort transposons were associated with facultative heterochromatin and euchromatin and formed the center of topologically associated domains delimited by protein coding genes. Transposons were scattered across autosomes, which contrasted with the dense compartments of constitutive heterochromatin surrounding the centromeres in flowering plants. Most of the features observed in hornworts are also present in liverworts or in mosses but are distinct from flowering plants. Hence, the ancestral genome of bryophytes was likely a patchwork of units of euchromatin interspersed within facultative and constitutive heterochromatin. We propose this genome organization was ancestral to land plants.


Assuntos
Anthocerotophyta , Briófitas , Bryopsida , Filogenia , Cromatina , Heterocromatina/genética , Eucromatina/genética , Briófitas/genética , Anthocerotophyta/genética , Bryopsida/genética
5.
PLoS One ; 18(8): e0286941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37639389

RESUMO

In the Japanese hagfish, Eptatretus burgeri, approximately 21% of the genomic DNA in germ cells (2n = 52) consists of 16 chromosomes (eliminated [E]-chromosomes) that are eliminated from presumptive somatic cells (2n = 36). To uncover the eliminated genome (E-genome), we have identified 16 eliminated repetitive DNA families from eight hagfish species, with 11 of these repeats being selectively amplified in the germline genome of E. burgeri. Furthermore, we have demonstrated that six of these sequences, namely EEEb1-6, are exclusively localized on all 16 E-chromosomes. This has led to the hypothesis that the eight pairs of E-chromosomes are derived from one pair of ancestral chromosomes via multiple duplication events over a prolonged evolutionary period. NGS analysis has recently facilitated the re-assembly of two distinct draft genomes of E. burgeri, derived from the testis and liver. This advancement allows for the prediction of not only nonrepetitive eliminated sequences but also over 100 repetitive and eliminated sequences, accomplished through K-mer-based analysis. In this study, we report four novel eliminated repetitive DNA sequences (designated as EEEb7-10) and confirm the relative chromosomal localization of all eliminated repeats (EEEb1-10) by fluorescence in situ hybridization (FISH). With the exception of EEEb10, all sequences were exclusively detected on EEEb1-positive chromosomes. Surprisingly, EEEb10 was detected as an intense signal on EEEb1-positive chromosomes and as a scattered signal on other chromosomes in germ cells. The study further divided the eight pairs of E-chromosomes into six groups based on the signal distribution of each DNA family, and fiber-FISH experiments showed that the EEEb2-10 family was dispersed in the EEEb1-positive extended chromatin fiber. These findings provide new insights into the mechanisms underlying chromosome elimination and the evolution of E-chromosomes, supporting our previous hypothesis.


Assuntos
Feiticeiras (Peixe) , Animais , Masculino , Biologia Computacional , DNA , Eucromatina , Feiticeiras (Peixe)/genética , Hibridização in Situ Fluorescente
6.
Nature ; 621(7978): 355-364, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612510

RESUMO

The prevalence of highly repetitive sequences within the human Y chromosome has prevented its complete assembly to date1 and led to its systematic omission from genomic analyses. Here we present de novo assemblies of 43 Y chromosomes spanning 182,900 years of human evolution and report considerable diversity in size and structure. Half of the male-specific euchromatic region is subject to large inversions with a greater than twofold higher recurrence rate compared with all other chromosomes2. Ampliconic sequences associated with these inversions show differing mutation rates that are sequence context dependent, and some ampliconic genes exhibit evidence for concerted evolution with the acquisition and purging of lineage-specific pseudogenes. The largest heterochromatic region in the human genome, Yq12, is composed of alternating repeat arrays that show extensive variation in the number, size and distribution, but retain a 1:1 copy-number ratio. Finally, our data suggest that the boundary between the recombining pseudoautosomal region 1 and the non-recombining portions of the X and Y chromosomes lies 500 kb away from the currently established1 boundary. The availability of fully sequence-resolved Y chromosomes from multiple individuals provides a unique opportunity for identifying new associations of traits with specific Y-chromosomal variants and garnering insights into the evolution and function of complex regions of the human genome.


Assuntos
Cromossomos Humanos Y , Evolução Molecular , Humanos , Masculino , Cromossomos Humanos Y/genética , Genoma Humano/genética , Genômica , Taxa de Mutação , Fenótipo , Eucromatina/genética , Pseudogenes , Variação Genética/genética , Cromossomos Humanos X/genética , Regiões Pseudoautossômicas/genética
7.
Insect Mol Biol ; 32(6): 725-737, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37615351

RESUMO

Satellite DNAs (satDNAs) are highly repeated tandem sequences primarily located in heterochromatin, although their occurrence in euchromatin has been reported. Here, our aim was to advance the understanding of satDNA and multiple sex chromosome evolution in heteropterans. We combined cytogenetic and genomic approaches to study, for the first time, the satDNA composition of the genome in an Oxycarenidae bug, Oxycarenus hyalinipennis. The species exhibits a male karyotype of 2n = 19 (14A + 2 m + X1 X2 Y), with a highly differentiated Y chromosome, as demonstrated by C-banding and comparative genomic hybridization, revealing an enrichment of repeats from the male genome. Additionally, comparative analysis between males and females revealed that the 26 identified satDNA families are significantly biased towards male genome, accumulating in discrete regions in the Y chromosome. Exceptionally, the OhyaSat04-125 family was found to be distributed virtually throughout the entire extension of the Y chromosome. This suggests an important role of satDNA in Y chromosome differentiation, in comparison of other repeats, which collectively shows similar abundance between sexes, about 50%. Furthermore, chromosomal mapping of all satDNA families revealed an unexpected high spread in euchromatic regions, covering the entire extension, irrespective of their abundance. Only discrete regions of heterochromatin on the Y chromosome and of the m-chromosomes (peculiar chromosomes commonly observed in heteropterans) were enriched with satDNAs. The putative causes of the intense enrichment of satDNAs in euchromatin are discussed, including the possible existence of burst cycles similar to transposable elements and as a result of holocentricity. These data challenge the classical notion that euchromatin is not enriched with satDNAs.


Assuntos
DNA Satélite , Hemípteros , Humanos , Feminino , Masculino , Animais , Eucromatina , Hemípteros/genética , Heterocromatina , Hibridização Genômica Comparativa , Hibridização in Situ Fluorescente , Cromossomos Sexuais , Evolução Molecular
8.
PLoS Pathog ; 19(8): e1011525, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535497

RESUMO

Through the association of protein complexes to DNA, the eukaryotic nuclear genome is broadly organized into open euchromatin that is accessible for enzymes acting on DNA and condensed heterochromatin that is inaccessible. Chemical and physical alterations to chromatin may impact its organization and functionality and are therefore important regulators of nuclear processes. Studies in various fungal plant pathogens have uncovered an association between chromatin organization and expression of in planta-induced genes that are important for pathogenicity. This review discusses chromatin-based regulation mechanisms as determined in the fungal plant pathogen Verticillium dahliae and relates the importance of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal plant pathogens.


Assuntos
Ascomicetos , Verticillium , Epigênese Genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Ascomicetos/genética , Verticillium/genética , Eucromatina/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(6): e2214824120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406303

RESUMO

The three mammalian TET dioxygenases oxidize the methyl group of 5-methylcytosine in DNA, and the oxidized methylcytosines are essential intermediates in all known pathways of DNA demethylation. To define the in vivo consequences of complete TET deficiency, we inducibly deleted all three Tet genes in the mouse genome. Tet1/2/3-inducible TKO (iTKO) mice succumbed to acute myeloid leukemia (AML) by 4 to 5 wk. Single-cell RNA sequencing of Tet iTKO bone marrow cells revealed the appearance of new myeloid cell populations characterized by a striking increase in expression of all members of the stefin/cystatin gene cluster on mouse chromosome 16. In patients with AML, high stefin/cystatin gene expression correlates with poor clinical outcomes. Increased expression of the clustered stefin/cystatin genes was associated with a heterochromatin-to-euchromatin compartment switch with readthrough transcription downstream of the clustered stefin/cystatin genes as well as other highly expressed genes, but only minor changes in DNA methylation. Our data highlight roles for TET enzymes that are distinct from their established function in DNA demethylation and instead involve increased transcriptional readthrough and changes in three-dimensional genome organization.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Animais , Camundongos , Heterocromatina/genética , Eucromatina , Metilação de DNA , 5-Metilcitosina/metabolismo , Leucemia Mieloide Aguda/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Mamíferos/genética
10.
Nucleic Acids Res ; 51(14): 7269-7287, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37334829

RESUMO

Many genetic syndromes are linked to mutations in genes encoding factors that guide chromatin organization. Among them, several distinct rare genetic diseases are linked to mutations in SMCHD1 that encodes the structural maintenance of chromosomes flexible hinge domain containing 1 chromatin-associated factor. In humans, its function as well as the impact of its mutations remains poorly defined. To fill this gap, we determined the episignature associated with heterozygous SMCHD1 variants in primary cells and cell lineages derived from induced pluripotent stem cells for Bosma arhinia and microphthalmia syndrome (BAMS) and type 2 facioscapulohumeral dystrophy (FSHD2). In human tissues, SMCHD1 regulates the distribution of methylated CpGs, H3K27 trimethylation and CTCF at repressed chromatin but also at euchromatin. Based on the exploration of tissues affected either in FSHD or in BAMS, i.e. skeletal muscle fibers and neural crest stem cells, respectively, our results emphasize multiple functions for SMCHD1, in chromatin compaction, chromatin insulation and gene regulation with variable targets or phenotypical outcomes. We concluded that in rare genetic diseases, SMCHD1 variants impact gene expression in two ways: (i) by changing the chromatin context at a number of euchromatin loci or (ii) by directly regulating some loci encoding master transcription factors required for cell fate determination and tissue differentiation.


Assuntos
Microftalmia , Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Crista Neural/metabolismo , Microftalmia/genética , Eucromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Cromatina/genética
11.
Nature ; 619(7968): 112-121, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316654

RESUMO

Human genomics is witnessing an ongoing paradigm shift from a single reference sequence to a pangenome form, but populations of Asian ancestry are underrepresented. Here we present data from the first phase of the Chinese Pangenome Consortium, including a collection of 116 high-quality and haplotype-phased de novo assemblies based on 58 core samples representing 36 minority Chinese ethnic groups. With an average 30.65× high-fidelity long-read sequence coverage, an average contiguity N50 of more than 35.63 megabases and an average total size of 3.01 gigabases, the CPC core assemblies add 189 million base pairs of euchromatic polymorphic sequences and 1,367 protein-coding gene duplications to GRCh38. We identified 15.9 million small variants and 78,072 structural variants, of which 5.9 million small variants and 34,223 structural variants were not reported in a recently released pangenome reference1. The Chinese Pangenome Consortium data demonstrate a remarkable increase in the discovery of novel and missing sequences when individuals are included from underrepresented minority ethnic groups. The missing reference sequences were enriched with archaic-derived alleles and genes that confer essential functions related to keratinization, response to ultraviolet radiation, DNA repair, immunological responses and lifespan, implying great potential for shedding new light on human evolution and recovering missing heritability in complex disease mapping.


Assuntos
População do Leste Asiático , Etnicidade , Variação Genética , Genoma Humano , Genética Humana , Grupos Minoritários , Humanos , População do Leste Asiático/classificação , População do Leste Asiático/genética , Etnicidade/genética , Genoma Humano/genética , Análise de Sequência de DNA , Raios Ultravioleta , Genética Humana/normas , Minorias Étnicas e Raciais , Padrões de Referência , Haplótipos/genética , Eucromatina/genética , Alelos , Reparo do DNA/genética , Queratinas/genética , Queratinas/metabolismo , Longevidade/genética , Imunidade/genética
12.
PLoS Comput Biol ; 19(5): e1011142, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37228178

RESUMO

Chromosomes are arranged in distinct territories within the nucleus of animal cells. Recent experiments have shown that these territories overlap at their edges, suggesting partial mixing during interphase. Experiments that knock-down of condensin II proteins during interphase indicate increased chromosome mixing, which demonstrates control of the mixing. In this study, we use a generic polymer simulation to quantify the dynamics of chromosome mixing over time. We introduce the chromosome mixing index, which quantifies the mixing of distinct chromosomes in the nucleus. We find that the chromosome mixing index in a small confinement volume (as a model of the nucleus), increases as a power-law of the time, with the scaling exponent varying non-monotonically with self-interaction and volume fraction. By comparing the chromosome mixing index with both monomer subdiffusion due to (non-topological) intermingling of chromosomes as well as even slower reptation, we show that for relatively large volume fractions, the scaling exponent of the chromosome mixing index is related to Rouse dynamics for relatively weak chromosome attractions and to reptation for strong attractions. In addition, we extend our model to more realistically account for the situation of the Drosophila chromosome by including the heterogeneity of the polymers and their lengths to account for microphase separation of euchromatin and heterochromatin and their interactions with the nuclear lamina. We find that the interaction with the lamina further impedes chromosome mixing.


Assuntos
Cromossomos , Polímeros , Animais , Polímeros/metabolismo , Cromossomos/genética , Núcleo Celular/metabolismo , Heterocromatina , Eucromatina/metabolismo , Drosophila/genética , Interfase/genética , Cromatina/metabolismo
13.
Curr Opin Genet Dev ; 80: 102049, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37229928

RESUMO

The organization of the genome into euchromatin and heterochromatin has been known for almost 100 years [1]. More than 50% of mammalian genomes contain repetitive sequences [2,3]. Recently, a functional link between the genome and its folding has been identified [4,5]. Homotypic clustering of long interspersed nuclear element 1 (LINE1 or L1) and B1/Alu retrotransposons forms grossly exclusive nuclear domains that characterize and predict heterochromatin and euchromatin, respectively. The spatial segregation of L1 and B1/Alu-rich compartments is conserved in mammalian cells and can be rebuilt during the cell cycle and established de novo in early embryogenesis. Inhibition of L1 RNA drastically weakened homotypic repeat contacts and compartmental segregation, indicating that L1 plays a more significant role than just being a compartmental marker. This simple and inclusive genetic coding model of L1 and B1/Alu in shaping the macroscopic structure of the genome provides a plausible explanation for the remarkable conservation and robustness of its folding in mammalian cells. It also proposes a conserved core structure on which subsequent dynamic regulation takes place.


Assuntos
Eucromatina , Heterocromatina , Animais , Heterocromatina/genética , Eucromatina/genética , Sequências Repetitivas de Ácido Nucleico/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos , Elementos Alu , Mamíferos
14.
Genome Res ; 33(4): 599-611, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922001

RESUMO

Although mutation rates have been extensively studied, variation in mutation rates throughout the genome is poorly understood. To understand patterns of genetic variation, it is important to understand how mutation rates vary. Chromatin modifications may be an important factor in determining variation in mutation rates in eukaryotic genomes. To study variation in mutation rates, we performed a mutation accumulation (MA) experiment in the filamentous fungus Neurospora crassa and sequenced the genomes of the 40 MA lines that had been propagated asexually for approximately 1015 [Formula: see text] mitoses. We detected 1322 mutations in total and observed that the mutation rate was higher in regions of low GC, in domains of H3K9 trimethylation, in centromeric regions, and in domains of H3K27 trimethylation. The rate of single-nucleotide mutations in euchromatin was [Formula: see text] In contrast, the mutation rate in H3K9me3 domains was 10-fold higher: 2.43 [Formula: see text] We also observed that the spectrum of single-nucleotide mutations was different between H3K9me3 and euchromatic domains. Our statistical model of mutation rate variation predicted a moderate amount of extant genetic variation, suggesting that the mutation rate is an important factor in determining levels of natural genetic variation. Furthermore, we characterized mutation rates of structural variants, complex mutations, and the effect of local sequence context on the mutation rate. Our study highlights that chromatin modifications are associated with mutation rates, and accurate evolutionary inferences should take variation in mutation rates across the genome into account.


Assuntos
Neurospora crassa , Neurospora crassa/genética , Mutagênese , Mutação , Taxa de Mutação , Eucromatina , Nucleotídeos
15.
Biomolecules ; 13(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36830746

RESUMO

DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic information is extracted from the required group of genes. The key to extracting genetic information is chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-density "euchromatin" and high-density "heterochromatin", with various factors being involved in its regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex, which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role in the formation of higher-order chromatin structures and transcriptional repression by binding to Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further analysis of nucleosome regulation within heterochromatin is expected in future studies.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Heterocromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Eucromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Cromatina/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
16.
Genes (Basel) ; 14(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36833416

RESUMO

Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.


Assuntos
Carnívoros , Mustelidae , Animais , Mustelidae/genética , Heterocromatina , Hibridização in Situ Fluorescente , Eucromatina , Carnívoros/genética , Estruturas Cromossômicas
17.
Nat Commun ; 14(1): 1150, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36854665

RESUMO

The principles that govern the organization of genomes, which are needed for an understanding of how chromosomes are packaged and function in eukaryotic cells, could be deciphered if the three-dimensional (3D) structures are known. Recently, single-cell imaging techniques have been developed to determine the 3D coordinates of genomic loci in vivo. Here, we introduce a computational method (Distance Matrix to Ensemble of Structures, DIMES), based on the maximum entropy principle, with experimental pairwise distances between loci as constraints, to generate a unique ensemble of 3D chromatin structures. Using the ensemble of structures, we quantitatively account for the distribution of pairwise distances, three-body co-localization, and higher-order interactions. The DIMES method can be applied to both small and chromosome-scale imaging data to quantify the extent of heterogeneity and fluctuations in the shapes across various length scales. We develop a perturbation method in conjunction with DIMES to predict the changes in 3D structures from structural variations. Our method also reveals quantitative differences between the 3D structures inferred from Hi-C and those measured in imaging experiments. Finally, the physical interpretation of the parameters extracted from DIMES provides insights into the origin of phase separation between euchromatin and heterochromatin domains.


Assuntos
Cromatina , Eucromatina , Cromatina/genética , Entropia , Heterocromatina , Interfase/genética
18.
Cell Rep ; 42(1): 111996, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36680776

RESUMO

Chromatin organization must be maintained during cell proliferation to preserve cellular identity and genome integrity. However, DNA replication results in transient displacement of DNA-bound proteins, and it is unclear how they regain access to newly replicated DNA. Using quantitative proteomics coupled to Nascent Chromatin Capture or isolation of Proteins on Nascent DNA, we provide time-resolved binding kinetics for thousands of proteins behind replisomes within euchromatin and heterochromatin in human cells. This shows that most proteins regain access within minutes to newly replicated DNA. In contrast, 25% of the identified proteins do not, and this delay cannot be inferred from their known function or nuclear abundance. Instead, chromatin organization and G1 phase entry affect their reassociation. Finally, DNA replication not only disrupts but also promotes recruitment of transcription factors and chromatin remodelers, providing a significant advance in understanding how DNA replication could contribute to programmed changes of cell memory.


Assuntos
Cromatina , Proteômica , Humanos , Replicação do DNA , Eucromatina , Heterocromatina , DNA
20.
Microbiol Spectr ; 11(1): e0304922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515553

RESUMO

The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.


Assuntos
Malária Falciparum , Plasmodium falciparum , Animais , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Eucromatina/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...